Main Menu of NCERT Solution

N O T I C E:

Hey, guys, I will deliver if anyone needs notes, a worksheet, a solution for the chapter, MCQ, and whatever they like. immediately. Thanks. cONTACT ME @ +91-8800304018(W)

Thursday, July 18, 2024

Motion Ch-8 Class 9 NCERT Updated by Md. Farrukh Asif

 

 NCERT Solutions for Class 9 Science  “Motion” :

NCERT Solutions for Class 9 Science Chapter 8 “Motion”:

NCERT Solutions for Class 9 Science Chapter 8 Motion.
Introducing: Our Science experts have intelligently crafted "Motion" to align with the updated CBSE 2024-25 syllabus for class 9. By condensing complex textbook content into straightforward solutions, students can easily tackle NCERT questions. You can access all the NCERT Solutions for Class 9 Science Chapter 7 on our (cbsencert21.blogspot.com) website. Furthermore, students can also find NCERT Solutions for Class 9 Science.

NCERT SOLUTIONS FOR CLASS 9 SCIENCE
CHAPTER-8 MOTION

NCERT Solutions for class 9 Science Chapter 8 Motion have been prepared and uploaded for reference by our team of academic experts at NCERT Solution cbsencert21.blogspot.com. Access solutions to all chapters of NCERT class 9 Science from our website for comprehensive guidance. Utilize the following NCERT solutions of Chapter 8, crafted by our team, as a valuable reference. Take the time to review Chapter 8 on Motion before heading into the exam.

What we learned?

Ø Motion is a change of position; it can be described in terms of the distance moved or the displacement.

Ø The motion of an object could be uniform or non-uniform depending on whether its velocity is constant or changing.

Ø The speed of an object is the distance covered per unit time, and velocity is the displacement per unit time.

Ø The acceleration of an object is the change in velocity per unit time.

Ø Uniform and non-uniform motions of objects can be shown through graphs.

Ø The motion of an object moving at uniform acceleration can be described with the help of the following equations, namely

v = u + at

s = ut + ½ at2

2as = v2 – u2

1.       MATTER IN OUR SURROUNDINGS

2.       IS MATTER AROUND US PURE?

3.       ATOMS AND MOLECULES

4.       STRUCTURE OF THE ATOM

5.       THE FUNDAMENTAL UNIT OF LIFE

6.       TISSUES

7.       MOTION

8.       FORCE AND LAWS OF MOTION

9.       GRAVITATION

10.   WORK AND ENERGY

11.   SOUND

12.   IMPROVEMENT IN FOOD RESOURCES

 Question 1.

An object has moved through a distance. Can it have zero displacement? If yes, support your answer with an example. 
Answer: 

Yes, if an object has moved through a distance it can have zero displacement because the displacement of an object is the actual change in its position when it moves from one position to the other. So if an object travels from point A to B and then returns back to point A again, the total displacement is zero.

Question 2.

A farmer moves along the boundary of a square field of side 10 m in 40 s. What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds?

Answer: 
Distance covered by a farmer in 40 seconds

=4 x (10) m= 40 m

Speed of the farmer = distance/time = 40m/40s = 1 m/s.

Total time is given in the Question = 2min 20seconds

= 60+60+20 =140 seconds

Since he completes 1 round of the field in 40 seconds, he will complete 3 rounds in 120 seconds (2 mins), or 120 m distance is covered in 2 minutes. In another 20 seconds will cover another 20 m so the total distance covered in 2 min 20 sec

= 120 +20 =140 m.

Displacement = √102 + 102  =√200

= 10√2 m (as per diagram)
=10 x 1.414= 14.14 m.

Question 3.

Which of the following is true for displacement?
(a) It cannot be zero.
(b) Its magnitude is greater than the distance traveled by the object.
Answer: 

Both (a) as well as (b) are false concerning the concept of displacement.

Question 4.

Distinguish between speed and velocity.
Answer: 

Speed of a body is the distance travelled by it per unit time while velocity is displacement per unit time of the body during movement.

Question 5.

Under what condition(s) is the magnitude of the average velocity of an object equal to its average speed?
Answer: 

If the distance travelled by an object is equal to its displacement then the magnitude of the average velocity of an object will be equal to its average speed.

Question 6.

What does the odometer of an automobile measure?
Answer: 

The odometer of an automobile measures the distance covered by that automobile.

Question 7.

What does the path of an object look like when it is in uniform motion?
Answer: 

Graphically the path of an object will be linear i.e. look like a straight line when it is in uniform motion.

Question 8.

During an experiment, a signal from a spaceship reached the ground station in five minutes. What was the distance of the spaceship from the ground station? The signal travels at the speed of light, that is 3 x108ms-1
Answer: 

Distance = Speed x time

= 5 min x (3 x 108 m s-1 )

= (5 x 60) seconds x (3 x 108 m s-1 )

= 300 sec x (3 x 103 m s-1 )

= 900 sec x (3 x 108 m s-1 )

= 9 x 1010 m

Question 9.

When will you say a body is in
(i) uniform acceleration?
(ii) non-uniform acceleration?
Answer: 

(i) Uniform acceleration: When an object travels in a straight line and its velocity changes by an equal amount in equal intervals of time, it is said to have uniform acceleration.

(ii) nonuniform acceleration: It is also called variable acceleration. When the velocity of an object changes by unequal amounts in equal intervals of time, it is said to have non-uniform acceleration.

 Question 10.

 A bus decreases its speed from 80 kmh-1 to 60 km h-1 in 5 s.
Find the acceleration of the bus.
Answer: 

The initial speed of bus (u) = 80 km-1
= 80 x 1000 / 60 x 60 sec

= 200 / 9 ms-1

= 22.22 ms-1

final speed of bus (v)=60 km-1 =60 x 1000 / 60 x 60 seconds
=50 / 3 ms-1
=16.67 ms-1 time (t) = 5 s

acceleration (a) = ( v – u) /t

= (16.67 – 22.22)/5

= -5.55/5

= -1.11 s

Question 11.

A train starting from a railway station and moving with uniform acceleration attains a speed of 40 km h-1 in 10 minutes. Find its acceleration.
Answer: 

Since the train starts from rest(railway station) = u = zero

The final velocity of the train:

V= 40 km h-1

=(40 x 1000) / 60 x 60 ms-1

= 100/9  ms-1

= 11.11 ms-1

time (t) = 10 min = 10 x 60

= 600 seconds

Since a = (v – u )/t

= 11.11 ms-1 / 600 seconds

= 0.018 m/s2

Question 12.

What is the nature of the distance-time graphs for uniform and non-uniform motion of an object?
Answer: 

If an object has a uniform motion then the nature of the distance-time graph will be linear i.e. it would be a straight line and if it non-non-uniformform motion then the nature of the distance time graph is a curved line.

Question 13.

What can you say about the motion of an object whose distance-time graph is a straight line parallel to the time axis?

Answer: 

If the object’s distance-time graph is a straight line parallel to the time axis indicates that with increasing time the distance of that object is not increasing hence the object is at rest i.e. not moving.


Question 14.

What can you say about the motion of an object if its speed-time graph is a straight line parallel to the time axis?
Answer: 

Such a graph indicates that the object is traveling with uniform velocity.


Question 15.

What is the quantity which is measured by the area occupied below the velocity-time graph?
Answer: 

The area occupied below the velocity-time graph measures the distance moved by any object.

Question 16.

A bus starting from rest moves with a uniform acceleration of 0.1m s-2 for 2 minutes. Find (a) the speed acquired, and (b) the distance traveled.
Answer: 

(a) u=0, a=0.1 ms-1, t= 2 min = 6-+60=120 seconds.

v=u+at = 0 + .1 x 120

= 12 ms-1

so (a) speed acquired
v= 12 ms-1

(b) s = ut + ½ at2

=0 x 120 + ½ x 0.1 x 1202
= 720 m.

Question 17.

A train is traveling at a speed of 90km h-1. Brakes are applied to produce a uniform acceleration of -0.5m s-2. Find how far the train will go before it is brought to rest.
Answer: 

= 90 km h-1

= (90 x 1000) / 60 x 60

= 25 ms-1

a = -0.5 ms-2

v =0(train is brought to rest)

v= u+at = 25 + (-0.5) x t   

0 =25 – 0.5 x t

0.5t = 25,

or t = 25/0.5
= 50 seconds

S = ut + ½ at2

= 25 x 50 +1/2 x (-0.5) x 502

= 1250 – 625 = 625m

Question 18.

A trolley, while going down an inclined plane, has an acceleration of 2cm s-2. What will be its velocity 3 s after the start?
Answer: 

u=0, a=2 cm/s2, t= 3s

v= u +at

= 0 + 2 x 3 = 6 cm/s

Question 19.

A racing car has a uniform acceleration of 4 cm s-2. What distance will it cover in 10 seconds after start?
Answer: 

u = 0, a=5m/s2, t= 10 s

s= ut + ½ at2

= 0x10 +(4 x 10 x 10)/2

= 0 + 200

= 200 m

Question 20.

A stone is thrown in a vertically upward direction with a velocity of 5 cm s-2. If the acceleration of the stone during its motion is 10 cm s-2n in the downward direction, what will be the height attained by the stone and how much time will it take to reach there?
Answer: 

v = 0 (since at maximum height its velocity will be zero)

v = u + at 

= 5 + (-10) x t

0 = 5 – 10t

10t = 5, or, t = 5/10 =0.5 second.

= 2.5 – 1.25 = 1.25m

Question 21.

 An athlete completes one round of a circular track of diameter 200 m in 40 seconds. What will be the distance covered and the displacement at the end of 2 minutes 20 s?
Answer: 

circumference of circular track = 2πr

= 4400/7 m

rounds completed by athletes in
2 min 20 sec = s= 140/40 = 3.5m

therefore, total distance covered =4400 / 7 x 3.5

= 2200 m

 


Since one complete round of circular track needs 40s he will complete 3 rounds in 2mins and in next 20s he can complete half round therefore displacement = diameter = 200m.

Question 22.

Joseph jogs from one end A to the other end B of a straight 300 m road in 2 minutes 50 seconds and then turns around and jogs 100 m back to point C in another 1 minute. What are Joseph’s average speeds and velocities in jogging (a) from A to B and (b) from A to C?
Answer: 
(a) distance = 300m

time = 2min30seconds = 150 seconds

average speed from A to B = average velocity from A to B

= 300m/150s = 2m/s

(b) average speed from A to C = (300+100)m/(150+60)sec

= 400 m/210 s = 1.90 m/s

displacement from A to C

= (300 – 100) m =200 m

time =2 min 30 sec + 1 min = 210 s

velocity = displacement/time
= 200 m/210 s = 0.95 m/s

Question 23.

Abdul, while driving to school, computes the average speed for his trip to be 20km h-1. On his return trip along the same route, there is less traffic and the average speed is 40km h-1. What is the average speed for Abdul’s trip?
Answer: 

If we suppose that distance from Abdul’s home to school = x km

while driving to school:-

velocity = displacement/time

20 = x/t, or, t=x/20 hr

on his return rip:-

speed = 40 km–1,

40= x /t’

or, to =x/40 hr

total distance travelled = x + x = 2x

total time = t + t’ = x/20 + x/40

=(2x + x)/40 = 3x/40 hr

average speed for Abdul’s trip

= 2x/(3x/40) = 80x/3x = 26.67km/hr

Question 24.

 A motorboat starting from rest on a lake accelerates in a straight line at a constant rate of 3.0 m s-2 for 8.0 s. How far does the boat travel during this time?
Answer: 

since the motorboat starts from r u= 0

time (t) = 8s, 

s= ut + ½ at2

= 0 +  ½ x 3 x 82

distance = 96 m

Question 25.

A driver traveling at 52 km h-1 applies the brakes and accelerates uniformly in the opposite direction. The car stops in 5 s. Another driver going at 3 km h-1 in another car applies his brakes slowly and stops in 10 s. On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two traveled led her after the brakes were applied?
Answer: 


As given in the figure below AB (in red line) and CD(in red line) are the Speed-time graph for given two cars with initial speeds 52 kmh-1 and 3 kmh-1respectively.

Distance Travelledthe  by the first car before coming to rest =Area of DOAB

= (1/2) x OB x OA

= (½) x 5 s x 52 kmh-1

= (1/2) x 5 x(52 x 1000)/3600 m

= (1/2) x 5 x (130/9) m

= 325/9 m

= 36.11 m

Distance Travelledthe  by the second car before coming to rest =Area of DOCD 

=(1/2) x OD x OA

=(1/2) x 10 s x 3 kmh-1

 =(1/2) x 10 s x(3 x 1000) / 3600 m

= 5 x 5 /6 m

= 25/6 m

= 4.16 m

∴ Clearly the first car will travel farther (36.11 m) than the first car(4.16 m).

Question 26.

Fig 8.11 shows the distance-time graph of three objects, A, B and C. Study the graph and answer the following Questions :


(a) Which of the three is travelling the fastest?

(b) Are all three ever at the same point on the road?

(c) How far was traveled when B passes A?

(d) How far has B travelled by the time it passes C?

Answer:



(a) It is clear from graph that B covers more distance in less time. Therefore, B is the fastest.

(b) All of them never come at the same point at the same time.

(c) According to graph; each small division shows about 0.57 km.

A is passing B at point S which is in line with point P (on the distance axis) and shows about 9.14 km

Thus, at this p,point C travels about

9.14 - (0.57 x 3.75)km
= 9.14 km – 2.1375 km

= 7.0025 km 

Thus, when A passes B, C travels about 7 km.

(d) B passes C at point Q at the distance axis which is

=5.28 km

Therefore, B travelled about 5.28 km wpassedsses to C.

Question 27.

A ball is gently dropped from a height of 20 m. If its velocity increases uniformly at the rate of 10ms-2, with what velocity will it strike the ground? After what time will it strike the ground?
Answer:
Let us assume, the final velocity with the ich ball will strike the ground is ‘v’ the time it takes to strike the ground be ‘t’

Initial Velocity of ball u=0

Distance or height of fall s=20 m

Downward acceleration a= 10 ms-2

As we know,

V2=u2–2as
Or, 2as = v2-u2

= v2=2as + u2

= 2 x 10 x 20 + 0

V=400 ms-1The financial velocity  of the ball, v 

t= (v-u)/a

∴ Time taken by the ball to strike= (20-0)/10

= 20/10

= 2 seconds

Question 28.

The speed-time graph for a car is shown is Fig. 8.12.

                                     Fig. 8.12

(a) Find how long does the travels are in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.

(b) Which part of the graph represents nts uniform motion of the car?

Answer:


(a) Distatraveledlled by car in the 4 second

The area under the slope of the speed – time graph gives the distance traveled by an object.

In the given graph

56 full squares and 12 half squares come under the area slope for the time of second.

Total number of squares = 56 + 12/2 = 62 squares

The total area of the squares will give the distance traveled by the car a second. On the time axis,

5 squares = 2 seconds, therefore 1 square = 2/5 seconds 

on the ed, axis there are 3 squares = 2m/s

therefore reread one square

=  4/15 the 

so area of 62 squares=4/15 x 62 

= 248/15 m = 16.53 m

Hence the car travels 16.53m in the first 4 seconds.

(b) The straight line part of the graph, from point A to point B represents the car.

Question 29.

State which of the following situations are possible and give an example for each of these:

(a) an object with a constant acceleration but with zero velocity

(b) an object moving in a certain direction with an acceleration in the perpendicular direction.

Answer:

(a) An object with a constant acceleration can still have the zero velocity. For exa, simply an object that is at rest on the surface of earth will have zero velocity but still being acted upon by the gravitational force of earth with an acceleration of 9.81 ms-2 towards the center of earth. Hence when an object starts falling freely can have constant acceleration but with zero velocity.

(b) When an athlete moves with a velocity of constant magnitude along the circular path, the only change in his velocity is due to the change in the direction of motion. Here, the motion of the athlete moving along a circular path is, therefore, an example of an accelerated motion where acceleration is always perpendicular to direction of motion of an object at a given instance. Hence it is possible when an object moves on a circular path.

Question 30.

An artificial satellite is moving in a circular orbit of radius 42250 km. Calculate its speed if it takes 24 hours to revolve around the earth.
Answer:

Let us assume an artificial satellite, which is moving in a circular orbit of radius 42250 km covers a distance ‘s’ as it revolve around earth with speed ‘v’ in given time ‘t’ of 24 hours.

= 42250The radiusdius of circular orbit r =42250 x 1000 m

Time taken by artificial satellite t=24 hours

=24 x 60 x 60 s

Distance covered by satellite s =Circumferencea  of a circular orbit

= 2πr

∴ Speed of satellite v = (2πr) / t

= [2 x (22/7) x 42250 x 1000]/(24 x 60 x 60)

= (2 x 22 x 42250 x 1000)/(7 x 24 x 60 x 60) ms-1

= 3073.74 ms-2

= 3.073 km/s

*** See You Again ***

======================

Share,, Like, and Comment Please

======================

 


No comments:

Post a Comment